Active Learning for Hierarchical Text Classification
نویسندگان
چکیده
Hierarchical text classification plays an important role in many real-world applications, such as webpage topic classification, product categorization and user feedback classification. Usually a large number of training examples are needed to build an accurate hierarchical classification system. Active learning has been shown to reduce the training examples significantly, but it has not been applied to hierarchical text classification due to several technical challenges. In this paper, we study active learning for hierarchical text classification. We propose a realistic multi-oracle setting as well as a novel active learning framework, and devise several novel leveraging strategies under this new framework. Hierarchical relation between different categories has been explored and leveraged to improve active learning further. Experiments show that our methods are quite effective in reducing the number of oracle queries (by 74% to 90%) in building accurate hierarchical classification systems. As far as we know, this is the first work that studies active learning in hierarchical text classification with promising results.
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملTreeBoost.MH: A Boosting Algorithm for Multi-label Hierarchical Text Categorization
Hierarchical Text Categorization (HTC) is the task of generating (usually by means of supervised learning algorithms) text classifiers that operate on hierarchically structured classification schemes. Notwithstanding the fact that most largesized classification schemes for text have a hierarchical structure, so far the attention of text classification researchers has mostly focused on algorithm...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملHierarchical Text Classification with Latent Concepts
Recently, hierarchical text classification has become an active research topic. The essential idea is that the descendant classes can share the information of the ancestor classes in a predefined taxonomy. In this paper, we claim that each class has several latent concepts and its subclasses share information with these different concepts respectively. Then, we propose a variant Passive-Aggress...
متن کاملImproving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...
متن کامل